Enhancing retinal image by the Contourlet transform

نویسندگان

  • Peng Feng
  • Yingjun Pan
  • Biao Wei
  • Wei Jin
  • Deling Mi
چکیده

The evaluation of retinal images is widely used to help doctors diagnose many diseases, such as diabetes or hypertension. Due to the acquisition process, retinal images often have low grey level contrast and dynamic range. This problem may seriously affect the diagnostic procedure and its results. Here we present a new multi-scale method for retinal image contrast enhancement based on the Contourlet transform. The Contourlet transform has better performance in representing edges than wavelets for its anisotropy and directionality, and is therefore well-suited for multi-scale edge enhancement. We modify the Contourlet coefficients in corresponding subbands via a nonlinear function and take the noise into account for more precise reconstruction and better visualization. We compare this approach with enhancement based on the Wavelet transform, Histogram Equalization, Local Normalization and Linear Unsharp Masking. The application of this method on images from the DRIVE database showed that the proposed approach outperforms other enhancement methods on low contrast and dynamic range images, with an encouraging improvement, and might be helpful for vessel segmentation. 2006 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Robust Image Denoising Technique in the Contourlet Transform Domain

The contourlet transform has the benefit of efficiently capturing the oriented geometrical structures of images. In this paper, by incorporating the ideas of Stein’s Unbiased Risk Estimator (SURE) approach in Nonsubsampled Contourlet Transform (NSCT) domain, a new image denoising technique is devised. We utilize the characteristics of NSCT coefficients in high and low subbands and apply SURE sh...

متن کامل

Fusion of Panchromatic and Multispectral Images Using Non Subsampled Contourlet Transform and FFT Based Spectral Histogram (RESEARCH NOTE)

Image fusion is a method for obtaining a highly informative image by merging the relative information of an object obtained from two or more image sources of the same scene. The satellite cameras give a single band panchromatic (PAN) image with high spatial information and multispectral (MS) image with more spectral information. The problem exists today is either PAN or MS image is available fr...

متن کامل

Contourlet-Based Edge Extraction for Image Registration

Image registration is a crucial step in most image processing tasks for which the final result is achieved from a combination of various resources. In general, the majority of registration methods consist of the following four steps: feature extraction, feature matching, transform modeling, and finally image resampling. As the accuracy of a registration process is highly dependent to the fe...

متن کامل

An extended feature set for blind image steganalysis in contourlet domain

The aim of image steganalysis is to detect the presence of hidden messages in stego images. We propose a blind image steganalysis method in Contourlet domain and then show that the embedding process changes statistics of Contourlet coefficients. The suspicious image is transformed into Contourlet space, and then the statistics of Contourlet subbands coefficients are extracted as features. We us...

متن کامل

Color Image Enhancement Based on Contourlet Transform Coefficients

In this study, new method for enhancing color image based on contourlet transform and human visual system proposes. The color image is converted to HSV (Hue , Saturation, Value) values. The V, which represents the luminance value of color image, decomposed to its coefficients by nonsubsampling contourlet transform, then applying grey-level contrast enhancement technique on some of the coefficie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Pattern Recognition Letters

دوره 28  شماره 

صفحات  -

تاریخ انتشار 2007